--- title: "Paired vs Multiple Comparisons" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Paired vs Multiple Comparisons} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 6 ) ``` ```{r setup, results='hide', message=FALSE, warning=FALSE, echo=FALSE} library(BCEA) library(dplyr) library(reshape2) library(ggplot2) library(purrr) ``` ## Introduction The intention of this vignette is to show how to plot the CEAC and EIB plots depending on whether we consider all interventions simultaneously or pair-wise against a reference. ## Multiple interventions This situation is when there are more than two interventions to consider. Incremental values can be obtained either always against a fixed reference intervention, such as status-quo, or for all comparisons simultaneously. We will call these a paired comparison or a multiple comparison. ### Against a fixed reference intervention #### R code This is the default plot for `ceac.plot()` so we simply follow the same steps as above with the new data set. ```{r} data("Smoking") he <- bcea(eff, cost, ref = 4, Kmax = 500) ``` ```{r fig.height=10} par(mfrow = c(2,1)) ceac.plot(he) abline(h = 0.5, lty = 2) abline(v = c(160, 225), lty = 3) eib.plot(he, plot.cri = FALSE) ``` ### Pair-wise comparisons #### R code In _BCEA_ we first we must determine all combinations of paired interventions using the `multi.ce()` function. ```{r} he.multi <- multi.ce(he) ``` ```{r fig.height=10} par(mfrow = c(2, 1)) ceac.plot(he.multi) abline(h = 0.5, lty = 2) abline(v = c(160, 225), lty = 3) eib.plot(he, plot.cri = FALSE) ```